

Canada's national laboratory for particle and nuclear physics and accelerator-based science

SRG Evolution of  $0\nu\beta\beta$  Operators in Light Nuclei

Peter Gysbers<sup>1,2</sup> P. Navrátil<sup>2</sup> & S. Quaglioni<sup>3</sup> <sup>1</sup>University of British Columbia, <sup>2</sup>TRIUMF, <sup>3</sup>LLNL Feb 15, 2019





- Background
- Two-body operators
  - recap:  $\beta$ -decay,  $0\nu\beta\beta$
  - progress: NCSM vs CC benchmarks in light nuclei
- Three-body operators
  - progress: implementing transition densities



• SRG evolution is a unitary transformation which improves convergence

$$U_{\alpha} \hat{O} U_{\alpha}^{\dagger} = O_{\alpha}^{(1)} + O_{\alpha}^{(2)} + O_{\alpha}^{(3)} + \dots$$

Introduces higher-body terms, O<sup>(a)</sup><sub>α</sub>, determined in the appropriate *a*-body system (a ≤ A)
E.g. if O = O<sup>(2)</sup>:



For  $|\psi_k\rangle = |kj^{\pi}tt_z\rangle = \sum c_{n\ell s}^k |n\ell s j^{\pi}tt_z\rangle$ ,  $U_{\alpha}$  is constructed in blocks:

$$U_{lpha}^{j^{\pi}tt_{z}}=\sum_{k}\left|kj^{\pi}t,lpha
ight
angle\left\langle kj^{\pi}t
ight|$$

Non-scalar operators may connect states with  $j^{\pi}tt_z$ , e.g.

$$\langle f, j_f | O_{\alpha} | i, j_i \rangle = \langle f, j_f | U_{\alpha}^{j_f} O U_{\alpha}^{j_i^{\dagger}} | j_i \rangle$$

Converting to single-particle basis:

$$\begin{array}{l} \langle a'b'J_{a'b'} | \ O_{\alpha} \ | abJ_{ab} \rangle & a = n_a, \ell_a, j_a \\ = \sum_{if} c^{if}_{a'b'ab} \ \langle f, j_f | \ O_{\alpha} \ | i, j_i \rangle \end{array}$$





$$\hat{O} = GT^{(1)} + MEC^{(2)} \rightarrow \hat{O}_{\lambda} = GT^{(1)} + GT^{(2)}_{\lambda} + MEC^{(2)}_{\lambda} + \dots$$

Operator:

Gamow-Teller (1-body) + chiral meson exchange current (2-body) Park (2003)

#### Potential: "N<sup>4</sup>LO NN + $3N_{InI}$ "

 chiral NN @ N<sup>4</sup>LO, Machleidt PRC96 (2017), 500MeV cutoff

 $\pi T \pi$ 

• 3N local/non-local, Navrátil

•  $c_D = -1.8$ 

 $\pi$ 





- SRG evolved matrix elements used in coupled-cluster and IM-SRG methods (up to Sn<sup>100</sup>)
- Does inclusion of the MEC explain g<sub>A</sub> quenching?







### $\hat{O}_{0 uetaeta}=\hat{O}_{GT}+\hat{O}_{F}+\hat{O}_{T}$ from J. Engel

Two-body SRG:  $\lambda = 2 \text{ fm}^{-1}$ , chiral NN @ N<sup>3</sup>LO



## Application to $0\nu\beta\beta$





# Preliminary Results: $0\nu\beta\beta_{\lambda,2b}$

- Shell-model (J. Engel, M. Horoi)
   <sup>76</sup>Ge
- JUN45 interaction,  $\hbar\omega = 9.23 \text{ MeV}$
- $\sim$  7% effect,  $\lambda=2~{
  m fm}^{-1}$





## Results in Light Nuclei



Peter Gysbers (UBC/TRIUMF)



## Benchmarks with Coupled Cluster



(Figures from Sam Novario)





# Effects of SRG (two-body)



Peter Gysbers (UBC/TRIUMF)



For 
$$|\psi_k\rangle = |kJ^{\rho}T\rangle = \sum c_{Ni}^k |NiJ^{\rho}T\rangle$$
  
 $|NiJ^{\rho}T\rangle = \sum C_{n\ell sjt;\mathcal{NLJ}}^{NiJT} |(n\ell sjt;\mathcal{NLJ})JT\rangle \quad (N = 2n + \ell + 2\mathcal{N} + \mathcal{L})$   
 $U_{\alpha}^{J^{\rho}T} = \sum |kJ^{\rho}T, \alpha\rangle \langle kJ^{\rho}T|$ 

Non-scalar operators may connect states with  $J^{\rho}T(T_z)$ , e.g.

$$\langle f, J_f | O_{\alpha} | i, J_i \rangle = \langle J_f | U_{\alpha}^{J_f} O U_{\alpha}^{J_i \dagger} | i, J_i \rangle$$

k

Converting to single-particle basis:

$$\begin{array}{l} \langle a'b'J_{a'b'}c'J_{a'b'c'} \mid O_{\alpha} \mid abJ_{ab}cJ_{abc} \rangle \qquad a = n_a, \ell_a, j_a \\ = \sum_{if} c^{if}_{a'b'c'abc} \langle f, J_f \mid O_{\alpha} \mid i, J_i \rangle \end{array}$$





• Generalized code to calculate:

$$\langle f, J_f || \, \hat{O}^{(3)} \, || i, J_i \rangle = \frac{1}{36} \sum \langle \alpha \beta \gamma | \, \hat{O} \, |\delta \epsilon \omega \rangle \, \langle f, J_f || \, a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\gamma}^{\dagger} a_{\omega} a_{\epsilon} a_{\delta} \, || i, J_i \rangle$$

- Decouple  $\langle abJ_{ab}cJ_{abc}| \, \hat{O} \, | deJ_{de}fJ_{def} 
  angle o \langle abc | \, \hat{O} \, | def 
  angle$  on the fly
- Benchmarked general operator method with three-body interaction



# Preliminary Results: $0\nu\beta\beta_{\lambda,3b}$





## Preliminary Results: $0\nu\beta\beta_{\lambda,3b}$







## Preliminary Results: $0\nu\beta\beta_{\lambda,3b}$







- Operators must be SRG evolved to converge to the correct result
- Method implemented in 2B and 3B for arbitrary operators
- So far:  $\sigma \tau$ , axial MEC,  $0\nu\beta\beta$ , radius, E2
- Available in single-particle coordinates
- Results for  $\beta$ -decay strengths: <sup>3</sup>H $\rightarrow$ <sup>3</sup>He, <sup>6</sup>He $\rightarrow$ <sup>6</sup>Li and other nuclei
- Results for  $0\nu\beta\beta_{\lambda,2b}$ :  $^{8}H\rightarrow^{8}Be$ ,  $^{14}C\rightarrow^{14}O$ , etc
- In progress:
  - Application of  $0\nu\beta\beta_{\lambda,3b}$  matrix elements in many-body methods
  - Quantification of 2- and 3-body evolution effects



## Extra Slide: $0\nu\beta\beta$ Operators

$$\hat{O}_{0
uetaeta}=\hat{O}_{GT}+\hat{O}_F+\hat{O}_T$$
 $O_\gamma=H_\gamma y_\gamma au_1^+ au_2^+$ 

$$H_{\gamma}(r_{12}) = \frac{2R}{\pi} \int_0^\infty \mathrm{d}q \frac{q \cdot f_{\gamma}(q \cdot r_{12})h_{\gamma}(q^2)}{q + E_0^{\mathsf{cl}}}$$
$$y_{\gamma} = \begin{cases} 1 & \gamma = F\\ \sigma_1 \cdot \sigma_2 & \gamma = GT\\ \sqrt{\frac{24\pi}{5}} Y_2(\hat{r_{12}}) \left(3(\sigma_1 \cdot r_{12})(\sigma_2 \cdot r_{12}) - \sigma_1 \cdot \sigma_2\right) & \gamma = T \end{cases}$$



Goal: solve the nuclear eigenvalue problem

$$H \ket{\Psi_k} = E_k \ket{\Psi_k}$$
, where  $H = \sum_i^A T_i + \sum_{i < j} V_{ij} + \sum_{i < j < f} V_{ijf} + \cdots$ 

#### with nucleons as the degrees of freedom

#### The No-core Shell Model

Expand in anti-symmetrized products of harmonic oscillator single-particle states

$$\ket{\Psi_k} = \sum_{N=0}^{N_{max}} \sum_j c_{Nj}^k \ket{\Phi_{Nj}}$$



Calculations should converge to the exact value as  $N_{max} 
ightarrow \infty$ 



- Problem: Huge model-space size required to accommodate short-range physics
- Solution: use renormalized potentials in smaller model-space
- Caveat: need renormalized operators



Unitary transformation that decouples high and low momentum physics

 $H_lpha = U_lpha H U_lpha^\dagger$  where  $U_lpha U_lpha^\dagger = 1$ 

$$\frac{\mathrm{d}H_{\alpha}}{\mathrm{d}\alpha} = [\eta_{\alpha}, H_{\alpha}]$$
$$\eta_{\alpha} = \frac{\mathrm{d}U_{\alpha}}{\mathrm{d}\alpha}U_{\alpha}^{\dagger} = -\eta_{\alpha}^{\dagger}$$

Choose a generator, e.g.  $\eta_{lpha} = [\mathcal{T}, \mathcal{H}_{lpha}]$ 

$$\lambda = \alpha^{-1/4}$$
  
 $H_{\lambda = \infty} = H, \ U_{\lambda = \infty} = 1$ 





Rep.Prog.Phys.**76** 126301 (2013)



$$H \ket{\Psi_k} = E_k \ket{\Psi_k} \rightarrow H_\alpha \ket{\Psi_{k,\alpha}} = E_k \ket{\Psi_{k,\alpha}}$$

General operators must also be transformed:

$$egin{aligned} ig\langle \Psi_f | \ \hat{O} \left| \Psi_i 
ight
angle &= ig\langle \Psi_{f,lpha} | \ \hat{O}_lpha \left| \Psi_{i,lpha} 
ight
angle \ ext{where} \ \hat{O}_lpha &= U_lpha \hat{O} U_lpha^\dagger \ U_lpha &= \sum_k \left| \Psi_{k,lpha} 
ight
angle ig\langle \Psi_k | \end{aligned}$$



SRG transformations introduce higher-body terms in operators:

$$U_{lpha} \hat{O} U^{\dagger}_{lpha} = \hat{O}^{(1)}_{lpha} + \hat{O}^{(2)}_{lpha} + \hat{O}^{(3)}_{lpha} + \dots$$

Each term,  $\hat{O}_{\alpha}^{(a)}$ , must be determined in the appropriate *a*-body system ( $a \leq A$ ). E.g. if  $O = O^{(2)}$ :

$$O_{\alpha}^{(2)} = U_{\alpha}^{(2)} O^{(2)} U_{\alpha}^{\dagger (2)} \qquad \qquad U_{\alpha}^{(2)} = \sum |\psi_{\alpha, a=2}\rangle \langle \psi_{a=2}|$$
$$O_{\alpha}^{(3)} = U_{\alpha}^{(3)} \langle O^{(2)} \rangle^{(3)} U_{\alpha}^{\dagger (3)} - \langle O_{\alpha}^{(2)} \rangle^{(3)} \qquad \qquad U_{\alpha}^{(3)} = \sum |\psi_{\alpha, a=3}\rangle \langle \psi_{a=3}|$$



- leading order  $\sigma \tau$  (1-body): "Gamow-Teller" (GT)
- higher order (2-body):
   "Axial Meson Exchange Current" (MEC)
- shared parameters with chiral potentials





Results:  $\beta$ -decay <sup>3</sup>H $\rightarrow$ <sup>3</sup>He

$$\hat{O}=GT^{(1)}
ightarrow \hat{O}_{\lambda}=GT^{(1)}+GT^{(2)}_{\lambda}+\dots$$

$$\lambda = \alpha^{-1/4} ~ [\mathrm{fm}^{-1}]$$

#### Operator:

 $\begin{array}{l} \mathsf{Gamow-Teller (1-body)} \\ \langle {{{GT}}_{\lambda}^{(2)}} \rangle_{{{A=2}}} = \ \langle ({{{GT}}^{(1)}})_{\lambda} \rangle_{{{A=2}}} - \ \langle {{{GT}}^{(1)}} \rangle_{{{A=2}}} \end{array}$ 

#### Potential: "N<sup>4</sup>LO NN"

• chiral NN @ N<sup>4</sup>LO, Machleidt PRC96 (2017), 500MeV cutoff





$$\hat{O} = GT^{(1)} + MEC^{(2)} \rightarrow \hat{O}_{\lambda} = GT^{(1)} + GT^{(2)}_{\lambda} + MEC^{(2)}_{\lambda} + \dots$$

Operator:

Gamow-Teller (1-body) + chiral meson exchange current (2-body) Park (2003)

#### Potential: "N<sup>4</sup>LO NN"

- chiral NN @ N<sup>4</sup>LO, Machleidt PRC96 (2017), 500MeV cutoff
- LEC  $c_D = -1.8$  determined







- **c**<sub>D</sub>: one-pion exchange + 2N contact 3N force
- **c**<sub>3</sub>, **c**<sub>4</sub>: two-pion exchange 2N and 3N forces
- <sup>3</sup>He  $\beta$ -decay constrains  $c_D$ , insensitive to 3N force
- PRL **103** 102502 (2009)
   D. Gazit, S. Quaglioni,
   P. Navratil
- Errata: missing factor of  $-\frac{1}{4}$  in MEC  $c_D$  term

